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Advancements in computing and data from the near universal acceptance and

implementation of electronic health records has been formative for the growth of

personalized, automated, and immediate patient care models that were not previously

possible. Artificial intelligence (AI) and its subfields of machine learning, reinforcement

learning, and deep learning are well-suited to deal with such data. The authors in

this paper review current applications of AI in clinical medicine and discuss the most

likely future contributions that AI will provide to the healthcare industry. For instance,

in response to the need to risk stratify patients, appropriately cultivated and curated

data can assist decision-makers in stratifying preoperative patients into risk categories,

as well as categorizing the severity of ailments and health for non-operative patients

admitted to hospitals. Previous overt, traditional vital signs and laboratory values that

are used to signal alarms for an acutely decompensating patient may be replaced by

continuously monitoring and updating AI tools that can pick up early imperceptible

patterns predicting subtle health deterioration. Furthermore, AI may help overcome

challenges with multiple outcome optimization limitations or sequential decision-making

protocols that limit individualized patient care. Despite these tremendously helpful

advancements, the data sets that AI models train on and develop have the potential

for misapplication and thereby create concerns for application bias. Subsequently,

the mechanisms governing this disruptive innovation must be understood by clinical

decision-makers to prevent unnecessary harm. This need will force physicians to change

their educational infrastructure to facilitate understanding AI platforms, modeling, and

limitations to best acclimate practice in the age of AI. By performing a thorough narrative

review, this paper examines these specific AI applications, limitations, and requisites while

reviewing a few examples of major data sets that are being cultivated and curated in

the US.
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INTRODUCTION

Healthcare systems around the world have rapidly and
pervasively adopted electronic health record (EHR) systems.
Many countries report adoption rates higher than 90%, and the
US is among this group with a reported 96% use as of 2017
(1–3). Currently, nearly 80% of all US office-based physicians
have also adopted an EHR system to satisfy the specifications
and requirements set forth by the US Department of Health and
Human Services for such systems (4). The resulting underlying
databases created by EHR systems contain large heterogeneous
data sets that combine structured and formatted data elements
such as diagnoses (International Classification of Diseases-
10), procedures (Current Procedural Terminology R© code), and
medications (RxNorm), but also rich unstructured data such
as clinical narratives, which represent over 80% of the data in
EHRs (5).

Large healthcare systems realized the importance of this
data early on and created data warehouses, now used both for
research purposes and guiding evidence-based clinical practice.
Such data warehouses not only contain EHR data, but also
are often enriched with claims data, imaging data, “omics”-
type data (e.g., genetic variants associated with a disease or a
specific drug response), patient-generated data such as patient-
reported outcomes (Patient-Reported Outcomes Measurement
Information System R©) (6) and wearable-generated data (e.g.,
nutrition, at-home vitals monitoring, physical activity status)
from smartphones and watches. One example of the warehousing
of large clinical data for research is the OneFlorida Clinical
Research Consortium (7), funded by the Patient-Centered
Outcomes Research Institute (PCORI). The OneFlorida Clinical
Research Consortium is one of nine clinical data research
networks funded by PCORI and aggregates, which harmonizes
clinical data from 12 healthcare organizations that care for nearly
15 million Floridians in 22 hospitals and 914 clinical practices
across all 67 counties of the state of Florida. This data repository
functions alongside additional data warehouses that connect
to larger systems that share healthcare data across different
countries. The phenomenon of data sharing in healthcare is
worldwide. For instance, the European Medical Information
Framework (EMIF) contains EHR data from 14 countries,
harmonized into a common data model to facilitate cohort
discovery and research.With virtually unlimited capacity for data
storage and advances in computational power for data analysis,
the bottleneck is now in the development of appropriate methods
to discover new knowledge to improve care.

Artificial intelligence (AI) methods, in particular machine
learning (ML), reinforcement learning, and deep learning, are
particularly well-suited to deal with both the data type and
looming questions in healthcare. AI can aide physicians in
the complex task of risk stratifying patients for interventions,
identifying those most at risk of imminent decompensation, and
evaluating multiple small outcomes to optimize overall patient
outcomes. Integrating physicians into model development and
educating physicians in this field will be the next paradigm
shift in medical education. For example, the complexity of AI
methodologies varies greatly, in turn impacting the ease of

physician understanding and interpretation of results. Physicians
frequently use decision trees as tools; however, they are effectively
tied to the initial tree structure and thus somewhat static (8).
On the other hand, deep learning models such as convolution
neural networks are less easily interpretable, and may make it
more difficult to establish a causal link (9); thus, the development
of such models requires the active involvement of clinicians (10).
Neural networks commonly used to decipher images collected
from patients coupled with the corresponding interpretations
often require involvement from radiologists to curate appropriate
imaging data for training (11). A priori discussions by AI
developers and medically informed physicians are necessary to
define the levels of accuracy and interpretability that are required
in each clinical context.

Despite methodological, societal, and ethical concerns (12),
big datamethods are being broadly adopted in healthcare systems
for evidence-based clinical decision-making. In this paper, we
discuss some of the major opportunities for how AI can assist
healthcare workers in clinical decision-making. To prepare for
this disruptive innovation, certain facets of medicine will be
impacted earlier and more substantially than others. In this
paper, we performed an narrative review of specific aspects of
healthcare that we predict will most likely be first impacted by
AI and how that impact can influence everyday clinical practice.
Furthermore, this review includes the potential risks incurred
by adopting AI as well as the requisite educational curricula
changes and knowledge base needed to avert biases and prevent
unsound decision-making.

METHODOLOGY

We performed a comprehensive literature search using the
databases PubMed, EMBASE, and Cochrane Review using
the keywords (including alternative keywords): artificial
intelligence, machine learning, deep learning, perioperative
medicine, perioperative clinical decision making, preoperative
risk stratification, machine learning and multi-objective
optimization, machine learning and warning, machine learning
and bias, and machine learning in medical education. Literature
search included articles published between 2010 and 2020.
Inclusion criteria were articles that focused on adult surgical
patients, randomized controlled trials, observational studies,
review articles, systematic reviews, and meta-analyses. Exclusion
criteria were articles that focused on non-surgical encounters,
editorials, letters to the editors, commentaries, books and book
chapters, conference proceeding, and pediatric surgical patients.
The scope of this review is perioperative clinical decision-
making, including settings in the intensive care unit. In addition,
we highlight the impact of AI on the future of medical education.

RESULTS

An overview of the study’s methodology and results is presented
in Figure 1. The literature search yielded 1,072 abstracts, of
which 185 were duplicates. The authors screened 887 abstracts
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FIGURE 1 | PRISMA flow diagram of accessing artificial intelligence for clinical decision-making.

and 589 were excluded based on the above exclusion criteria.
The authors reviewed 289 full articles for eligibility and 186
articles were excluded because they did not meet inclusion
criteria. The literature summary focused on 103 full articles.
Upon completion of the literature review, we found that there
were five main themes related to the role of machine learning,
artificial intelligence, and clinical decision-making. The ever-
increasing applications of AI methods and tools have potential
in nearly every aspect of the clinical decision-making process. In
this review, the scope was narrowed to three main promising AI
application areas, the potential risks of implementation, and the
requisite need for additional education. Specifically, the areas of
application include: (1) risk stratification, (2) patient outcome
optimization, (3) early warning of acute decompensation, (4)
potential bias in ML, and (5) future medical training. These
five areas were chosen based on consensus among the authors,
who are familiar with recent literature and currently work and
research within the AI space. Additionally, these areas reflect
contemporary discussion points among clinicians, scientists,
engineers, and policymakers given the continued public health
burdens of acute illness, as well as the readily available detailed

time series data for many at-risk patients. For a more detailed
and granular review of AI and deep learning application, which
is outside the aims of this review, please see (13, 14).

DISCUSSION

Risk Stratification
ML models that can risk-stratify patients in preparation for
surgery will help clinicians identify high-risk patients and
optimize resource use and perioperative decisions. ML and
AI can help clinicians, patients, and their families efficiently
process all available data to generate informed, evidence-based
recommendations and participate in shared decision-making
to identify the best course of action. ML algorithms can be
incorporated into several areas across the spectrum of care,
either for disease management or in perioperative settings
(15). Risk-prediction models have been used in healthcare
practice to identify high-risk patients and to make appropriate
subsequent clinical decisions. Appropriate risk stratification
should result in proper resource use in this era of value-
based care. Most risk-prediction tools are historically built
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based upon statistical regression models. Examples include the
Framingham risk score, QRISK3 (for coronary heart disease,
ischemic stroke, and transient ischemic attack), and National
Surgical Quality Improvement Program (NSQIP). Unfortunately,
many of these risk stratification methods are either non-specific
and lack patient-level precision or require trained clinicians to
review the records and specifically assess the risk. Healthcare
systems have increasingly sought to use ML to assist in risk
stratification, and these ML models may outperform statistical
models in calibration and discrimination. A growing nationwide
effort is seeking to enhance preoperative and perioperative
support for high-risk patients and high-cost populations (16,
17). Preoperative evaluation clinics focusing on evaluating high-
risk patients have shown improvement in 30-day postoperative
outcomes (18). However, identifying these patients is challenging
because of the difficulty in timely access to patient data coupled
with the lack of robust predictivemodels. Many traditionally used
models have been created to predict postoperative complications
but with limited applicability at an individual patient level.
Any predictive risk score is dependent on the underlying data
and the technology used to process the data. In order to
create a better prediction, high-quality, continuous data from
multiple domains are required. Also, advancements in health
data processing, biosensors, genomics, and proteomics will help
provide a complete set of data that will enable perioperative
intelligence (19). Furthermore, risk stratification is not limited
to the preoperative setting. Incorporating intraoperative data for
early detection of complications or clinical aberrations could
also prevent inflammatory reactions that exacerbate the injury
or high-risk interventions that may lead to iatrogenic injuries.
Therefore, clinicians can use ML technology to build proactive
systems to avoid these potentially destructive processes.

Multiple ML models that risk-stratify patients with a disease
or prepare patients for surgery have been recently developed
and validated (16, 20–25). These ML models have been shown
to better predict mortality than conventional logistic regression
after liver cancer surgery, aortic aneurysm surgery, and cardiac
surgery. Other ML models have also been developed and
validated to predict the risk of super-utilization and plan
accordingly, starting in the preoperative setting in an increased
effort to enhance value-based care (17). ML models to predict
perioperative risk need to be accurate, locally calibrated, and
clinically accessible. Changes in patient condition throughout
the perioperative period can be included to update the risk
assessment. The advantage of ML models in risk prediction is
its automation capability, which is less burdensome compared
to current tools (e.g., NSQIP). ML models allow for continuous
recalculation of risk longitudinally over time, which can act
as early-warning systems alerting clinicians to sudden changes.
Incorporation of intraoperative data and interventions, such
as hypotension, enable further interventions that enhanced
recovery after surgery pathways emphasize. Another advantage
is the promise that the use of ML in medicine will facilitate
an understanding of what features drive outcomes (26). In
perioperative medicine, ML can maximize the benefits of
technology to provide safe, timely, and affordable healthcare. The
key is integration of all data-generating platforms throughout all

phases of patient care with collaboration to identify risks, detect
complications early, and offer timely treatment (19).

Patient Outcome Optimization
Optimization for each or the multiple potential patient outcomes
is vital to the clinical decision-making process and the ensuing
patient care. Typically, the requisite optimal steps, their
timing, and the best sequence are determined by healthcare
providers in consultation with family members. Despite best
intentions, such decisions occasionally lead to suboptimal
care due to the complexity of patient care, the increasing
responsibilities of healthcare providers, or simply because of
human error. The clinical decision-making process is often
strictly based on standard guidelines and protocols that satisfy
safety and accountability requirements. However, deviation from
established protocols in complex care environments can be
beneficial for the patient to adapt treatments for a more
personalized regimen. In such dynamic settings, ML methods
can be valuable tools for optimizing patient care outcomes in
a data-driven manner, especially in acute care settings. ML and
modern deep-learning techniques typically optimize an objective
function (e.g., medication dosage) based on complex and
multidimensional data (e.g., patient medical history extracted
from EHRs). ML tools for optimizing care outcomes have been
used in various settings, including critical care for optimizing
sepsis management (27), management of chronic conditions
(28), and optimizing surgical outcomes (29). Optimizing patient
outcomes can be based on relatively simple yet efficient tools,
such as decision trees in conjunction with the domain expertise to
systematically codify accepted understanding of disease models
and common treatments for patients. Although helpful in
assisting with single-step decisions, these tools fail to consider the
importance of sequential decision-making, which include many
decisions that are dependent on previous actions.

Another more sophisticated approach is to use sequential
decision-making tools that draw inspiration from related fields,
such as operation research. For example, deep reinforcement
learning models (30, 31) are based on well-known concepts such
as the Markov decision process (MDP) (32) and Q-learning
(33) adapted to neural networks. Reinforcement learning
models learn to identify optimal policies based on a reward
function. The policies are defined as a series of actions that
culminate in the greatest reward, hence identifying the optimal
policy. Recently, reinforcement learning and deep reinforcement
learning have been used in several clinical settings, including
optimal dosing and choice of medications, optimal timing of
interventions, and optimal individual target laboratory values
(34). For example, Nemati et al. used deep reinforcement
learning to optimize medication dosing (35), and Prasad et
al. (36) used a reinforcement learning approach to weaning
mechanical ventilation in the intensive care unit. Although
such tools hold great potential in optimizing the patient care
process, safety and accountability is paramount. This could
be complicated by the black-box nature of modern deep-
learning approaches. The resulting policies may be dynamic
and personalized, but their rationale may be challenging to
interpret and explain. Additionally, unlike typical simulation
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and gaming environments, applying reinforcement learning in
clinical settings is much more challenging. It is not trivial to
identify the most suitable reward structure, and the effects
of treatments can be non-deterministic. In such settings, it
is difficult to solve the credit assignment problem, i.e., to
demonstrate that deviations from the protocol based on a
reinforcement learning suggestion were beneficial for the patient.
Future approaches also could examine different time scales. For
example, although early interventions (e.g., early antibiotics) may
not lead to immediate improvements, they could culminate in the
greatest ultimate reward (e.g., higher survival rate).

Patient outcome optimization such as reinforcement learning
methods can ultimately provide a tool to help standardize
care at health systems of different scales. This could provide
a more equitable healthcare system, especially in rural and
remote settings.

Early Warning of Acute Decompensation
Acute decompensation is uncommon, but it is typically
accompanied by increasing physiologic derangements and
worse outcomes. Intervening early may mitigate poor outcomes;
however, it is often difficult to identify this patient population
before significant hemodynamic compromise with our
traditional standard monitoring and commonly used early-
warning scores. Six to eight hours may precede such acute
patient decompensation, which can easily provide ample time
for interventions to be made (37). The EHR contains a large
amount of data that may be useful to identify patients at the
highest risk of decompensation if the data are evaluated over
time (37, 38). Multivariate regression-based models or AI-based
early-warning systems have the potential to detect subtle trends
in physiologic parameters over time to provide precision and
reliability (38–41).

Vital sign monitoring and associated alarms were one of
the earliest methods to detect patient decompensation (40).
They are effective in alerting providers to discrete vital sign
abnormalities in real time; however, early or isolated vital
sign abnormalities also may fail to signal to providers an
impending decompensation (40). Once it becomes evident that
a patient is decompensating, the initial response is often directed
toward correcting one or more abnormalities until an etiology
is determined. The Modified Early Warning Score (MEWS),
Rothman Index, Sequential Organ Failure Assessment Score
(SOFA), and quick SOFA (qSOFA) were developed to incorporate
multiple vital sign abnormalities to identify at-risk patients before
decompensation occurs. The drawbacks to these scores are that
even if they are automated and incorporated into the medical
record, they rely on discrete data points of pre-existing vital
sign changes and are subject to reporting error. Additionally,
because of their high sensitivity but low discriminatory ability,
these scores identify a large number of patients as “at risk”
when the actual number is far lower (38). Furthermore, because
interventions often involve their own risks, they may not be
implemented until it becomes clear that a patient’s condition
is rapidly deteriorating. At that point, immediate and possibly
emergent interventions that are themselves high risk and invasive
must be performed. Preventative measures may be taken earlier

and with more accuracy if AI metrics are implemented as
opposed to the traditional risk-evaluation scores (40, 42). AI-
based monitoring incorporated into the EHR can facilitate the
use of large volumes of data for all patients more efficiently and
precisely than a physician could, enabling AI to identify patients
who are most at risk.

The operating room may be one of the most challenging
areas for early detection, workup, and treatment of acute
decompensation. The Hypotension Prediction Index (HPI;
Edwards Lifesciences, Irvine, CA) is an algorithm created
to aid in the early detection of intraoperative hypotension,
defined as mean arterial pressure <65 mmHg for non-cardiac
surgeries (41, 43, 44). It is now incorporated into the Edwards
monitoring system. It was developed using an ML, logistic
regression-based model analyzing components of the arterial
waveform (41, 43, 44). One advantage is that in addition to
early notification of hypotension, this tool also identifies some
of the most likely causes for the predicted hypotensive event,
e.g., vasoplegia, hypovolemia, or possibly conditions related to
cardiac contractility. Initial studies, although small, single center,
and not without bias, indicate that the HPI and implementation
of the monitor were reasonably effective in preventing clinically
significant hypotensive events. Although developed with AI,
this monitor and associated alarm rely on the data that it was
trained and developed on, and they do not learn and adapt with
each patient.

Using AI to effectively create an early-warning score using
time series data from the EHR presents many challenges. An ideal
score would identify patients before an obvious decompensation.
It would have excellent discriminatory ability so that physicians
would have confidence implementing appropriate interventions
as well as transparency to identify the sources of risk and
the reasons for decompensation. Incorporating appropriate
treatments and their effects on risk reduction remains a weakness
of all existing early-warning systems. AI-based algorithms using
time series data from the EHR are in development with
strong results. Shickel et al. used a modified recurrent neural
network model on temporal intensive care unit data to develop
deepSOFA, a real-time mortality risk prediction score based on
the traditional SOFA score (38). Its predictive ability performed
well in identifying increased risk of mortality. Lauritsen et al.
developed the explainable AI early-warning score (xAI-EWS).
It is meant to be incorporated into the EHR and uses a
temporal convolutional network and deep Taylor explanation
model to provide predictions. It has demonstrated feasibility
using predictions for risk of acute injury, sepsis, and acute lung
injury (39).

Potential for Bias in ML
As AI becomesmore pervasive in both public and personal health
across diverse populations, there have been increasing concerns,
and related examples, of AI solutions leading to inadvertent bias
of modeling results (45–48). Broadly, such bias can originate
from the data used for model training and testing, as well as
the mechanics of the model itself (49). Bias originating from
data can be pernicious; for instance, work by Weber et al. found
that simply filtering for “complete” EHRs, a common strategy for
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managing missing data, introduced a bias toward older patients
who were more likely female (50).

Less pernicious examples include reference imaging datasets
in which more than 80% of subjects were light-skinned
individuals (51). With respect to modeling mechanics, the non-
linearities, extensive interactions among variables, and difficulties
interpreting how ML models arrived at their results, ML
also presents many new challenges to addressing sources of
inadvertent bias that differ from classifiers that enforce linear
models of independent variables in smaller, more manageable
datasets. Under the rubric of decision support, an unfair
algorithm has been defined as “one whose decisions are
skewed toward a particular group of people” (49). Verma
and Rubin have clarified several definitions of algorithmic
fairness, where definitions are based on objective probabilistic
assessments (52). These definitions help provide a platform
for promoting algorithmic fairness by creating neutral models
through approaches addressing anti-classification, classification
parity, and model calibration on protected attributes (53).
Notably, these solutions may present their own ethical issues.
McCradden et al. (54) suggest that some solutions to algorithmic
fairness can instead reinforce health inequities and even
exacerbate harms to vulnerable groups. Until more robust
solutions to the challenges of algorithmic fairness can be
identified and implemented, physicians should remain vigilant
for how ML models, built on training samples from general
populations, may be misapplied to their own patients. This
appreciation of ML building and application will require a new
level of professional development and commensurate medical
education curricula, which will be discussed in the next section.

Paradigmatic Shift in Medical Training
Applying advances in biomedical informatics and ML models to
patient care will require clinicians to reconsider their educational
training and infrastructure. Wartman et al. noted that the
practice of medicine is transitioning from the Age of Information
to the Age of AI (55). Traditionally, medical curriculum has
been founded on memorizing a massive curriculum, applying
it to a learned clinical experience, and determining the validity
of ensuing information as it becomes published. Similarly,
understanding principles of normal variants of anatomy and
physiology, followed by an examination of pathophysiologic
variants, presents students with a model-based rubric in which
to incorporate each new wave of information learned through
personal experience as well as throughout the medical literature.
This paradigm has also permitted physicians to extrapolate
previous understanding by logic and experience to novel
diagnostic reasoning and therapeutic approaches by extension
of previous models. However, the amount of information has
become insurmountable. The time for medical information
to double was 50 years in 1950, 7 years in 1980, 3.5 years
in 2010, and a staggering estimate of 73 days in 2020 (56).
Humans are not only incapable of this level of exposure
or retention, but the magnitude has also created substantial
levels of stress-induced mental illness among learners (57).
Fortunately, advances in biomedical informatics point to new
approaches that can seamlessly synthesize old and new medical

information. These advances will provide the foundation for
AI advances to recognize patterns of patient information to
help diagnose, treat, and manage patients. This transition
will require the development of new knowledge, skills, and
attitudes by healthcare workers. Furthermore, it will require
a rethinking of the medical school curriculum, in which new
data analytics methods are carefully integrated with traditional
medical education. In an extremely busy curriculum and at a time
of numerous other considerations, such as climate change (58),
incorporating AI will present challenges.

Many of the AI subfields such as ML and deep learning
use complex algorithms that generate outputs from seemingly
opaque non-linear functions that most physicians likely find
difficult to understand or incorporate into their existing
approaches to evidence-based medicine. Subsequently, this
black-box phenomena (10) will be difficult for physicians to trust,
and it will also be a challenge for the doctor-patient relationship
since many physicians will find themselves unable to explain
the diagnosis, prediction, or therapy (59). This challenge will
increase with the stakes and timeliness of the given issue; for
instance, outcome assessments involving the withdrawal of care
may pose heightened anxiety regardless of the model’s accuracy.
Therefore, physicians will need to develop a basic understanding
of how input data are aggregated, analyzed, and generated
into specific pathways of care for individualized patients.
Furthermore, these algorithms will require physicians to have a
better understanding of calculus and linear algebra, manipulation
of data sets (curation, provenance, quality, integration, and
governance), and model performance metrics fundamental in
grading AI algorithmic decision-making. This knowledge will
allow physicians to recognize when AI algorithms are being
used on inappropriate patient populations, when AI tools have
become outdated and need updating, or when aggregated data
is biased. These new AI clinical decision-support systems have
limitations in their application to patient populations, contextual
changes, and therapeutic variances that will require a stronger
appreciation of probabilities and confidence ratings (59). It will
also be important to understand when physicians are justified
in deviating from AI-inspired treatment protocols. Physicians
will need to update their understanding of evidence-based
medicine principles to include modern approaches to analyzing
and assessing causality to ensure a robust understanding of how
patients, social determinants of health, and healthcare systems
interact to inform health-related outcomes. Physicians practicing
in the age of AI should be competent in the effective integration
and data use that emerges from an endless array of sources.

The emerging need for understanding how AI data platforms
function and generate predictions is juxtaposed with the ever-
important traditional need for communication skills, empathy,
and teamwork. Translating the predictions from complex AI
algorithms into meaningful and personalized information for
patients will require strong communication skills as well as
compassion. Compounding this resurgence of social skills
requisition for medical practice will be the application of
cognitive psychology principles. Understanding this need for
social skills will help identify biases and heuristics that
impact decision-making as well as help physicians frame
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choices, understand context, and have neutral but meaningful
conversations with patients (55).

CONCLUSIONS

The ubiquitous adoption of EHRs in healthcare systems around
the world has created vast repositories of personalized data
sets that are perfectly fitted for AI to examine, develop,
and predict upon. The subfields of ML and deep learning
networks have shown success in providing solutions to the
healthcare questions of risk stratification and optimizing patient
outcomes. Use of this technology will exponentially expand
as it is increasingly integrated into large healthcare systems.
AI capabilities will aide physicians in weighing competing
healthcare goals and numerous risks by facilitating multiple
outcome optimization of outcomes that are too difficult to
recognize and navigate on an individual and isolated basis.
Healthcare workers will be expected to comfortably work within
this new AI frontier and in turn relate it to their patients.
Furthermore, physicians must be able to interpret the predictions
of these AI algorithms as well as deconstruct the models from
which they ebb. In addition, physicians will need to recognize
plausible bias and the appropriate patient population application
that stems from understanding the training cohort used to
create the model. This understanding will require additional
medical education and professional development for current

practitioners and a revamped curriculum for all new learners
currently in medical school. Most importantly, physicians must
maintain and cultivate emotional intelligence and compassion
when relaying results and recommending interventions from
these complex models to uncertain and vulnerable patients who
want to make informed decisions for themselves or a family
member’s well-being.
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